By Topic

Decentralized Scheduling of Bursty Workload on Computing Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Juemin Zhang ; Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA ; Ningfang Mi ; Jianzhe Tai ; Waleed Meleis

Bursty workloads are often observed in a variety of systems such as grid services, multi-tier architectures, and large storage systems. Studies have shown that such burstiness can dramatically degrade system performance because of overloading, increased response time, and unavailable service. Computing grids, which often use distributed, autonomous resource management, are particularly susceptible to load imbalances caused by bursty workloads. In this paper, we use a simulation environment to investigate the performance of decentralized schedulers under various intensity levels of burstiness. We first demonstrate a significant performance degradation in the presence of strong and moderate bursty workloads. Then, we describe two new hybrid schedulers, based on duplication-invalidation, and assess the effectiveness of these schedulers under different intensities of burstiness. Our simulation results show that compared to the conventional decentralized methods, the proposed schedulers achieve a 40% performance improvement under the bursty condition while obtaining similar performance in non-bursty conditions.

Published in:

2011 IEEE International Conference on Communications (ICC)

Date of Conference:

5-9 June 2011