Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

A Bio-Inspired Robust Adaptive Random Search Algorithm for Distributed Beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chia-Shiang Tseng ; Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Chang-Ching Chen ; Lin, Che

A bio-inspired robust adaptive random search algorithm (BioRARSA), designed for distributed beamforming for sensor and relay networks, is proposed in this work. It has been shown via a systematic framework that BioRARSA converges in probability and its convergence time scales linearly with the number of distributed transmitters. More importantly, extensive simulation results demonstrate that the proposed BioRARSA outperforms existing adaptive distributed beamforming schemes by as large as 29.8% on average. This increase in performance results from the fact that BioRARSA can adaptively adjust its sampling stepsize via the ``swim'' behavior inspired by the bacterial foraging mechanism. Hence, the convergence time of BioRARSA is insensitive to the initial sampling stepsize of the algorithm, which makes it robust against the dynamic nature of distributed wireless networks.

Published in:

Communications (ICC), 2011 IEEE International Conference on

Date of Conference:

5-9 June 2011