By Topic

Design and Generalization Analysis of Orthogonal Matching Pursuit Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hussain, Z. ; Dept. of Comput. Sci ence, Univ. Coll. London, London, UK ; Shawe-Taylor, J. ; Hardoon, D.R. ; Dhanjal, C.

We derive generalization error (loss) bounds for orthogonal matching pursuit algorithms, starting with kernel matching pursuit and sparse kernel principal components analysis. We propose (to the best of our knowledge) the first loss bound for kernel matching pursuit using a novel application of sample compression and Vapnik-Chervonenkis bounds. For sparse kernel principal components analysis, we find that it can be bounded using a standard sample compression analysis, as the subspace it constructs is a compression scheme. We demonstrate empirically that this bound is tighter than previous state-of-the-art bounds for principal components analysis, which use global and local Rademacher complexities. From this analysis we propose a novel sparse variant of kernel canonical correlation analysis and bound its generalization performance using the results developed in this paper. We conclude with a general technique for designing matching pursuit algorithms for other learning domains.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 8 )