By Topic

Scalable Symbolic Execution of Distributed Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Sasnauskas, R. ; Commun. & Distrib. Syst. (ComSys), RWTH Aachen Univ., Aachen, Germany ; Dustmann, O.S. ; Kaminski, B.L. ; Wehrle, K.
more authors

Recent advances in symbolic execution have proposed a number of promising solutions to automatically achieve high-coverage and explore non-determinism during testing. This attractive testing technique of unmodified software assists developers with concrete inputs and deterministic schedules to analyze erroneous program paths. Being able to handle complex systems' software, these tools only consider single software instances and not their distributed execution which forms the core of distributed systems. The step to symbolic distributed execution is however steep, posing two core challenges: (1) additional state growth and (2) the state intra-dependencies resulting from communication. In this paper, we present SDE - a novel approach enabling scalable symbolic execution of distributed systems. The key contribution of our work is two-fold. First, we generalize the problem space of SDE and develop an algorithm significantly eliminating redundant states during testing. The key idea is to benefit from the nodes' local communication minimizing the number of states representing the distributed execution. Second, we demonstrate the practical applicability of SDE in testing with three sensor net scenarios running Contiki OS.

Published in:

Distributed Computing Systems (ICDCS), 2011 31st International Conference on

Date of Conference:

20-24 June 2011