By Topic

An Energy-Efficient Markov Chain-Based Randomized Duty Cycling Scheme for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghidini, G. ; Center for Res. in Wireless Mobility & Networking, Univ. of Texas at Arlington, Arlington, TX, USA ; Das, S.K.

To extend the life time of a wireless sensor network, sensor nodes usually switch between dormant and active states according to a duty cycling scheme. In randomized schemes, sensors use only partial or no information about their neighbors, and rely on randomness to generate working schedules. Duty cycling schemes are often evaluated in terms of the connection delay, i.e., the time until two neighboring nodes are simultaneously active, and the connection duration, i.e., the time until at least one of them switches to the dormant state. In this paper, we argue that duty cycling time (energy) efficiency, i.e., the ratio of time (energy) employed in ancillary operations when switching from and into deep sleep mode, is an important performance metric too. We present experimental results using Sun SPOT sensors that support our claim and highlight the performance trade-off between connection delay and time (energy) efficiency for a traditional scheme based on independent and identically distributed (i.i.d.) random variables. We propose a novel randomized duty cycling scheme based on Markov chains with the goal of (i) reducing the connection delay, while maintaining a given time (energy) efficiency, or (ii) keeping a constant connection delay, while increasing the time (energy) efficiency. The proposed scheme is analyzed mathematically by deriving the time efficiency, connection delay and duration in terms of the time slot length, duty cycle, and cost of set up and tear down operations. Analytical results demonstrate that the Markov chain-based scheme can improve the performance in terms of connection delay without affecting the time efficiency, or vice versa, as opposed to the trade-off observed in traditional schemes. Experimental results using Sun SPOT sensor nodes with the minimum number of operations during transitions from and into deep sleep mode confirm the mathematical analysis of the proposed Markov chain-based randomized scheme.

Published in:

Distributed Computing Systems (ICDCS), 2011 31st International Conference on

Date of Conference:

20-24 June 2011