Cart (Loading....) | Create Account
Close category search window
 

Compressibility of Deterministic and Random Infinite Sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amini, A. ; Electr. Eng. Dept., Sharif Univ. of Technol., Tehran, Iran ; Unser, M. ; Marvasti, F.

We introduce a definition of the notion of compressibility for infinite deterministic and i.i.d. random sequences which is based on the asymptotic behavior of truncated subsequences. For this purpose, we use asymptotic results regarding the distribution of order statistics for heavy-tail distributions and their link with α -stable laws for 1 <; α <; 2 . In many cases, our proposed definition of compressibility coincides with intuition. In particular, we prove that heavy-tail (polynomial decaying) distributions fulfill the requirements of compressibility. On the other hand, exponential decaying distributions like Laplace and Gaussian do not. The results are such that two compressible distributions can be compared with each other in terms of their degree of compressibility.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.