By Topic

Asymmetric Independent-Gate MOSFET SRAM for High Stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mingu Kang ; School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea ; H. K. Park ; J. Wang ; G. Yeap
more authors

In this paper, the application of an asymmetric independent-gate MOSFET (IG-MOSFET) to the bit-cell structures of the SRAM schemes that were previously proposed using the symmetric IG-MOSFET is analyzed. In addition, a novel SRAM scheme with the asymmetric IG-MOSFET is proposed to improve read stability and writeability by controlling the back gates of pass-gate and pull-up transistors. New array architecture is also suggested to prevent read stability degradation in the half-selected cell, where word line is selected but bit line is unselected. The previous SRAMs with IG-MOSFET (IG-SRAMs) fail to simultaneously improve read stability and writeability compared to the SRAM with the tied-gate MOSFET. The proposed IG-SRAM significantly improves both read stability and writeability at the cost of slightly increased bit-cell area and read delay, as compared to the previous IG-SRAMs.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 9 )