Cart (Loading....) | Create Account
Close category search window

Allocation of Computational Resources for Soft MIMO Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cirkic, M. ; Dept. of Electr. Eng. (ISY), Linkoping Univ., Linkoping, Sweden ; Persson, D. ; Larson, E.G.

We consider soft multiple-input multiple-output (MIMO) detection for the case of block fading. That is, the transmitted codeword spans over several independent channel realizations and several instances of the detection problem must be solved for each such realization. We develop methods that adaptively allocate computational resources to the detection problems of each channel realization, under a total per-codeword complexity constraint. Our main results are a formulation of the problem as a mathematical optimization problem with a well-defined objective function and constraints, and algorithms that solve this optimization problem efficiently computationally.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:5 ,  Issue: 8 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.