By Topic

CMOS layout design of the hysteresis McCulloch-Pitts neuron

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kurokawa, T. ; Dept. of Comput. Sci., Nat. Defense Acad., Yokosuka, Japan ; Lee, K.C. ; Cho, Y.B. ; Takefuji, Y.

A McCulloch-Pitts neuron is the simplified neuron model which has been successfully used for many optimisation problems. The neural network with the hysteresis property can suppress the oscillatory behaviours of neural dynamics so that the convergence time is shortened. In this paper, digital CMOS layout design of the hysteresis McCulloch-Pitts neuron is presented. Based on simulation results using the hysteresis McCulloch-Pitts binary neuron model, a 6-bit fixed point 2's complement arithmetic was adopted for the calculation of the input U of each neuron. Each neuron needs 204 transistors and requires a 399 lambda *368 lambda layout area using the MOSIS scalable CMOS/bulk (SCMOS) VLSI technology with 2 mu m rule of P well, double level metal. Layout design of the hysteresis McCulloch-Pitts neuron chip was completed, and fabrication of the chip and the design for the test circuit for the fabricated CMOS VLSI chip are underway at present.

Published in:

Electronics Letters  (Volume:26 ,  Issue: 25 )