Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Time Frequency Analysis of Electrooculograph (EOG) Signal of Eye Movement Potentials Based on Wavelet Energy Distribution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daud, W.M.B.W. ; Fac. of Electr. Eng., Univ. Teknol. Malaysia, Skudai, Malaysia ; Sudirman, R.

In this study, we describe the identification electroencephalography (EOG) signals of eye movement potentials by using wavelet algorithm which gives a lot of information than FFT. It shows the characteristic of the signals since energy is an important physical variable in signal analysis. The EOG signals are captured using electrodes place don the forehead around the eyes to record the eye movements. The wavelet features are used to determine the characteristic of eye movement waveform. The recorded data is composed of an eye movement toward four directions, i.e. upward, downward, left and right. The proposed analysis for each eyes signal is analyzed by using Wavelet Transform (WT) by comparing the energy distribution with the change of time and frequency of each signal. A wavelet scalogram is plotted to display the different percentages of energy for each wavelet coefficient towards different movement. From the result, it is proved that the different EOG signals exhibit differences in signals energy with their corresponding scale such as left with scale 6 (8-16Hz), right with scale 8 (2-4Hz), downward with scale 9 (1-2Hz) and upward with scale 7 (4-8Hz).

Published in:

Modelling Symposium (AMS), 2011 Fifth Asia

Date of Conference:

24-26 May 2011