Cart (Loading....) | Create Account
Close category search window
 

Improving pose manifold and virtual images using bidirectional neural networks in face recognition using single image per person

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Abdolali, F. ; Fac. of Biomed. Eng., Amirkabir Univ. of Technol., Tehran, Iran ; Seyyedsalehi, S.

In this article, for the purpose of improving neural network models applied in face recognition using single image per person, a bidirectional neural network inspired of neocortex functional model is presented. In the proposed model, recognition is not performed in a single stage, but via two bottom-up and top-down phases and the recognition results of first stage is used for model adaptation. We have applied this novel adapting model in combination with clustering person and pose information technique to separate person and pose information and to estimate corresponding manifolds. To increase the number of training samples in the classifier neural network, virtual views of frontal images in the test dataset are synthesized using estimated manifolds. Training classifier network via virtual images obtained from bidirectional network, gives an accuracy rate of 86.36% on the test dataset which shows 15.46% improvement in accuracy of face recognition compared to training classifier with only frontal view images.

Published in:

Artificial Intelligence and Signal Processing (AISP), 2011 International Symposium on

Date of Conference:

15-16 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.