Cart (Loading....) | Create Account
Close category search window
 

Portable, Flexible, and Scalable Soft Vector Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yiannacouras, P. ; Edward S. Sr. Rogers Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Steffan, J.G. ; Rose, J.

Field-programmable gate arrays (FPGAs) are increasingly used to implement embedded digital systems, however, the hardware design necessary to do so is time-consuming and tedious. The amount of hardware design can be reduced by employing a microprocessor for less-critical computation in the system. Often this microprocessor is implemented using the FPGA reprogrammable fabric as a soft processor which presently have simple architectures and moderate performance. Our goal is to scale the performance of existing soft processors hence expanding their suitability to more critical computation. To this end we propose extending soft processors with vector extensions to exploit the abundant data parallelism found in many embedded kernels. Such a soft vector processor can execute these kernels much faster than a single-core hence reducing the need for hardware implementations. We observe this improved execution speed through experimentation with vector extended soft processor architecture (VESPA) which is designed, implemented, and evaluated on real FPGA hardware. VESPA is shown to effectively scale performance up to 32 lanes, while providing substantial architectural flexibility to create a fine-grained design space. With these characteristics, and portability across FPGA devices, soft vector processors can provide exact-fit architectures which can efficiently and more easily implement data parallel workloads over custom FPGA hardware design.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 8 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.