Cart (Loading....) | Create Account
Close category search window

Stochastic Uncertainty Models for the Luminance Consistency Assumption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Corpetti, T. ; Sino-French Lab. on Comput. Sci., Inst. of Autom., Beijing, China ; Memin, E.

In this paper, a stochastic formulation of the brightness consistency used in many computer vision problems involving dynamic scenes (for instance, motion estimation or point tracking) is proposed. Usually, this model, which assumes that the luminance of a point is constant along its trajectory, is expressed in a differential form through the total derivative of the luminance function. This differential equation linearly links the point velocity to the spatial and temporal gradients of the luminance function. However, when dealing with images, the available information only holds at discrete time and on a discrete grid. In this paper, we formalize the image luminance as a continuous function transported by a flow known only up to some uncertainties related to such a discretization process. Relying on stochastic calculus, we define a formulation of the luminance function preservation in which these uncertainties are taken into account. From such a framework, it can be shown that the usual deterministic optical flow constraint equation corresponds to our stochastic evolution under some strong constraints. These constraints can be relaxed by imposing a weaker temporal assumption on the luminance function and also in introducing anisotropic intensity-based uncertainties. We also show that these uncertainties can be computed at each point of the image grid from the image data and hence provide meaningful information on the reliability of the motion estimates. To demonstrate the benefit of such a stochastic formulation of the brightness consistency assumption, we have considered a local least-squares motion estimator relying on this new constraint. This new motion estimator significantly improves the quality of the results.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.