By Topic

Differentiating Between Images Using Wavelet-Based Transforms: A Comparative Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Levent Ozparlak ; Department of Electrical-Electronics Engineering, Baskent University, Ankara, Turkey ; Ismail Avcibas

We propose statistical image models for wavelet-based transforms, investigate their use, and compare their relative merits within the context of digital image forensics. We consider the problems of 1) differentiating computer graphics images from photographic images, 2) source camera and source scanner identification, and 3) source artist identification from digital painting samples. The features obtained from ridgelet and contourlet transform-based image models almost always perform better than the features obtained from wavelet-based image models for the problems at hand. We outline properties of efficient image representation, relate these properties to wavelet-based transforms, and discuss the experimental results in relation to the model properties.

Published in:

IEEE Transactions on Information Forensics and Security  (Volume:6 ,  Issue: 4 )