By Topic

Generating Consistent Buildings: A Semantic Approach for Integrating Procedural Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tutenel, T. ; Comput. Graphics Group, Delft Univ. of Technol., Delft, Netherlands ; Smelik, R.M. ; Lopes, R. ; de Kraker, K.J.
more authors

Computer games often take place in extensive virtual worlds, attractive for roaming and exploring. Unfortunately, current virtual cities can strongly hinder this kind of gameplay, since the buildings they feature typically have replicated interiors, or no interiors at all. Procedural content generation is becoming more established, with many techniques for automatically creating specific building elements. However, the integration of these techniques to form complete buildings is still largely unexplored, limiting their application to open game worlds. We propose a novel approach that integrates existing procedural techniques to generate such buildings. With minimal extensions, individual techniques can be coordinated to create buildings with consistently interrelated exteriors and interiors, as in the real world. Our solution offers a framework where various procedural techniques communicate with a moderator, which is responsible for negotiating the placement of building elements, making use of a library of semantic classes and constraints. We demonstrate the applicability of our approach by presenting several examples featuring the integration of a façade shape grammar, two different floor plan layout generation techniques, and furniture placement techniques. We conclude that this approach allows one to preserve the individual qualities of existing procedural techniques, while assisting the consistency maintenance of the generated buildings.

Published in:

Computational Intelligence and AI in Games, IEEE Transactions on  (Volume:3 ,  Issue: 3 )