By Topic

Solid-state fault isolation devices: application to future power electronics-based distribution systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Vodyakho, O. ; Center for Adv. Power Syst., Florida State Univ., Tallahassee, FL, USA ; Steurer, M. ; Neumayr, D. ; Edrington, C.S.
more authors

This study addresses the timely issues of modelling, and defining selection criteria for, a solid-state fault isolation device (FID) intended for use in power electronics-based distribution systems (PEDS). This work subsequently derives the FID parameters by mapping the characteristics of a conventional medium-voltage distribution system onto that of the PEDS envisioned under a new multi-university Engineering Research Centre. When conventional circuit breakers are used in distribution systems, they have a relatively long clearing time, causing the voltage to collapse for a significant time. A semiconductor circuit breaker, however, is expected to be able to switch fast enough to keep a voltage disturbance within acceptable limits. The main focus of this study is to address the operational issues of the interaction between the power electronic converters and the solid-state FID. The utilisation of rate of current decrease (di/dt) control during turn-off in conjunction with passive clamping devices to manage the overvoltage that results from very fast circuit breaker operation is introduced. In contrast to a simple conventional RC-snubber circuit, the proposed overvoltage management avoids high leakage current, which is the undesirable drawback of RC-snubber circuits. The presented prototype is experimentally verified with low and medium-voltage test circuits.

Published in:

Electric Power Applications, IET  (Volume:5 ,  Issue: 6 )