Cart (Loading....) | Create Account
Close category search window
 

A unified maximum likelihood approach to acoustic mismatch compensation: application to noisy Lombard speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Afify, M. ; CRIN-INRIA Lorraine, Vandoeuvre-les-Nancy, France ; Gong, Yifan ; Haton, J.-P.

In the context of continuous density hidden Markov model (CDHMM) we present a unified maximum likelihood (ML) approach to acoustic mismatch compensation. This is achieved by introducing additive Gaussian biases at the state level in both the mel cepstral and linear spectral domains. Flexible modelling of different mismatch effects can be obtained through appropriate bias tying. A maximum likelihood approach for joint estimation of both mel cepstral and linear spectral biases from the observed mismatched speech given only one set of clean speech models is presented, where the obtained bias estimates are used for the compensation of clean speech models during decoding. The proposed approach is applied to the recognition of noisy Lombard speech, and significant improvement in the word recognition rate is achieved

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:2 )

Date of Conference:

21-24 Apr 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.