Cart (Loading....) | Create Account
Close category search window
 

A Consistent Charge Model of GaAs MESFETs for Ku -Band Power Amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zheng Zhong ; Dept. of Electr. & Comput. En gineering, Nat. Univ. of Singapore, Singapore, Singapore ; Yong-Xin Guo ; Mook Seng Leong

In this paper, a consistent gate charge model for GaAs MESFETs based upon charge conservation is proposed for monolithic microwave integrated circuit power amplifier designs. This new model is capable of accurately modeling the transistor under various biasing conditions. The conventional approaches for charge modeling of GaAs MESFETs usually adopt analytical equations to fit nonlinear gate capacitors separately, which might be difficult to implement in circuit simulators whose capacitance is always the derivative of an internal state variable (charge). Moreover, compared with the conventional diode and Statz model, the performance prediction in the linear region, saturation knee region, and subthreshold region is greatly improved. Measured and modeled results of a 2 ×150 μm GaAs MESFET are compared and good agreement has been obtained. Comparisons between the proposed model, diode junction model, and Statz model are also presented in this paper. In addition, a class-AB Ku-band power amplifier using a 0.18-μm GaAs MESFET process was designed with the new model for verification of the new model accuracy.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 9 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.