By Topic

5T SRAM With Asymmetric Sizing for Improved Read Stability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Satyanand Nalam ; Department of Electrical and Computer Engineering, University of Virginia, Charlottesville ; Benton H. Calhoun

Conventional 6-transistor (6T) SRAM scaling to newer technologies and lower supply voltages is difficult due to a complex trade-off space involving stability, performance, power, and area. Local and global variation make SRAM design even more challenging. We present a 5-transistor (5T) bitcell that uses sizing asymmetry to improve read stability and to provide an efficient knob for trading off the aforementioned metrics. In this paper, we compare the 5T with the conventional 6T and the 8T and show how it can be a flexible, intermediate alternative between the two. We also investigate single-ended sensing for the 5T. Finally, we present measurement results in a 45 nm test chip that demonstrate the functionality of the 5T. Through a combination of write assists, the 5T can demonstrate comparable writability down to 0.7 V, while showing no read errors down to 0.5 V.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:46 ,  Issue: 10 )