By Topic

Improved Direct Power Control of a Wind Turbine Driven Doubly Fed Induction Generator During Transient Grid Voltage Unbalance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Heng Nian ; Dept. of Electr. Eng., Zhejiang Univ., Hangzhou, China ; Yipeng Song ; Peng Zhou ; Yikang He

This paper proposes an improved direct power control (DPC) strategy for a doubly fed induction generator (DFIG)-based wind power generation system under unbalanced grid voltage dips. The fundamental and double grid frequency power pulsations, which are produced by the transient unbalanced grid faults, are mathematically analyzed and accurately regulated. Five selectable control targets, with proper power references given, are designed for different applications during network unbalance. In order to provide enhanced control performance, two resonant controllers, which are tuned to have large gain at the power pulsation frequencies, are applied together with the proportional-integral controller to achieve full control of the DFIG output power. The effectiveness of the proposed DPC strategy is verified by the experimental results of a 5-kW DFIG system under different unbalanced voltage dips, which are generated by a specially designed voltage dip generator.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:26 ,  Issue: 3 )