By Topic

An SSVEP-Based BCI Using High Duty-Cycle Visual Flicker

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Po-Lei Lee ; Dept. of Electr. Eng., Nat. Central Univ., Jhongli, Taiwan ; Chia-Lung Yeh ; Cheng, J.Y.-S. ; Chia-Yen Yang
more authors

Steady-state visual-evoked potential (SSVEP)-based brain-computer interfaces (BCIs) have generated significant in terest due to their high information transfer rate (ITR). Due to the amplitude-frequency characteristic of the SSVEP, the flickering frequency of an SSVEP-based BCI is typically lower than 20 Hz to achieve a high SNR. However, a visual flicker with a flashing frequency below the critical flicker-fusion frequency often makes subjects feel flicker jerky and causes visual discomfort. This study presents a novel technique using high duty-cycle visual flicker to decrease user's visual discomfort. The proposed design uses LEDs flashing at 13.16 Hz, driven by flickering sequences consisting of repetitive stimulus cycles with a duration T (T = 76 ms). Each stimulus cycle included an ON state with a duration TON and an OFF state with a duration TOFF (T = TON + TOFF), and the duty cycle, defined as TONN/T, varied from 10.5% to 89.5%. This study also includes a questionnaire survey and analyzes the SSVEPs induced by different duty-cycle flickers. An 89.5% duty-cycle flicker, reported as a comfortable flicker, was adopted in a phase-tagged SSVEP system. Six subjects were asked to sequentially input a sequence of cursor commands with the 25.08-bits/min ITR.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 12 )