By Topic

Localizing Heart Sounds in Respiratory Signals Using Singular Spectrum Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ghaderi, F. ; Fac. of Math. & Inf., Univ. of Bremen, Bremen, Germany ; Mohseni, H.R. ; Sanei, S.

Respiratory sounds are always contaminated by heart sound interference. An essential preprocessing step in some of the heart sound cancellation methods is localizing primary heart sound components. Singular spectrum analysis (SSA), a powerful time series analysis technique, is used in this paper. Despite the frequency overlap of the heart and lung sound components, two different trends in the eigenvalue spectra are recognizable, which leads to find a subspace that contains more information about the underlying heart sound. Artificially mixed and real respiratory signals are used for evaluating the performance of the method. Selecting the appropriate length for the SSA window results in good decomposition quality and low computational cost for the algorithm. The results of the proposed method are compared with those of well-established methods, which use the wavelet transform and entropy of the signal to detect the heart sound components. The proposed method outperforms the wavelet-based method in terms of false detection and also correlation with the underlying heart sounds. Performance of the proposed method is slightly better than that of the entropy-based method. Moreover, the execution time of the former is significantly lower than that of the latter.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 12 )