By Topic

Multiscale Causal Connectivity Analysis by Canonical Correlation: Theory and Application to Epileptic Brain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guo Rong Wu ; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China ; Fuyong Chen ; Dezhi Kang ; Xiangyang Zhang
more authors

Multivariate Granger causality is a well-established approach for inferring information flow in complex systems, and it is being increasingly applied to map brain connectivity. Traditional Granger causality is based on vector autoregressive (AR) or mixed autoregressive moving average (ARMA) model, which are potentially affected by errors in parameter estimation and may be contaminated by zero-lag correlation, notably when modeling neuroimaging data. To overcome this issue, we present here an extended canonical correlation approach to measure multivariate Granger causal interactions among time series. The procedure includes a reduced rank step for calculating canonical correlation analysis (CCA), and extends the definition of causality including instantaneous effects, thus avoiding the potential estimation problems of AR (or ARMA) models. We tested this approach on simulated data and confirmed its practical utility by exploring local network connectivity at different scales in the epileptic brain analyzing scalp and depth-EEG data during an interictal period.

Published in:

IEEE Transactions on Biomedical Engineering  (Volume:58 ,  Issue: 11 )