By Topic

What Can an Arm Holster Worn Smart Phone Do for Activity Recognition?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muehlbauer, M. ; Embedded Syst. Lab., Univ. of Passau, Passau, Germany ; Bahle, G. ; Lukowicz, P.

While mobile phones are increasingly being used in activity recognition, tasks that require arm motion monitoring have so far not been studied on phone platforms. We leverage the fact that upper arm holsters are an increasingly popular way of wearing mobile devices during physical exercise to investigate the suitability of such platforms for arm dominated activity recognition. We focus on (1) user independent recognition from (2) a NULL class dominated, continuous data stream and (3) requiring no special care in device attachment (apart from being placed in a commercial holster). These are 3 key requirements for a realization in a real life mobile "App". We evaluate our methods on a gym exercises data set from 7 users that contains 11'000 individual repetitions of 10 different upper body exercises organized in 700 "sets" (=consecutive repetitions of the same exercise). On set level we achieve a user independent recognition of 93.6%. In over 90% of cases we can also count individual instances with an accuracy of ±20%.

Published in:

Wearable Computers (ISWC), 2011 15th Annual International Symposium on

Date of Conference:

12-15 June 2011