By Topic

An SMT-Based Approach to Bounded Model Checking of Designs in Communicating State Transition Matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

State Transition Matrix (STM) is a table-based modeling language for developing designs of software systems. Although widely accepted and used in software industry, there is lack of formal verification supports for conducting rigorous analysis to improve reliability of STM designs. In this paper, we present a symbolic encoding approach for STM designs that employ message passing as the means of communication, through which correctness of a STM design with respect to invariant properties could be Bounded Model Checked (BMC) by using Satisfiability Modulo Theories (SMT) solving techniques. We have built a prototype implementation of the proposed encoding and the state-of-the-art SMT solver- Yices, is used in our experiments as a back-end tool to evaluate the effectiveness of our approach. In addition, two approaches for accelerating SMT solving by introducing additional knowledge are proposed and their effectiveness is shown by our preliminary experimental results.

Published in:

Computational Science and Its Applications (ICCSA), 2011 International Conference on

Date of Conference:

20-23 June 2011