By Topic

Scheduling Power Consumption With Price Uncertainty

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tùng T. Kim ; Department of Electrical Engineering, Princeton University, Princeton ; H. Vincent Poor

The problem of causally scheduling power consumption to minimize the expected cost at the consumer side is considered. The price of electricity is assumed to be time-varying. The scheduler has access to past and current prices, but only statistical knowledge about future prices, which it uses to make an optimal decision in each time period. The scheduling problem is naturally cast as a Markov decision process. Algorithms to find decision thresholds for both noninterruptible and interruptible loads under a deadline constraint are then developed. Numerical results suggest that incorporating the statistical knowledge into the scheduling policies can result in significant savings, especially for short tasks. It is demonstrated with real price data from Commonwealth Edison that scheduling with mismatched modeling and online parameter estimation can still provide significant economic advantages to consumers.

Published in:

IEEE Transactions on Smart Grid  (Volume:2 ,  Issue: 3 )