By Topic

Constant-Weight Gray Codes for Local Rank Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Eyal Gad ; Department of Electrical Engineering, California Institute of Technology, Pasadena, U.S.A. ; Michael Langberg ; Moshe Schwartz ; Jehoshua Bruck

We consider the local rank-modulation (LRM) scheme in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. LRM is a generalization of the rank-modulation scheme, which has been recently suggested as a way of storing information in flash memory. We study constant-weight Gray codes for the LRM scheme in order to simulate conventional multilevel flash cells while retaining the benefits of rank modulation. We present a practical construction of codes with asymptotically-optimal rate and weight asymptotically half the length, thus having an asymptotically-optimal charge difference between adjacent cells. Next, we turn to examine the existence of optimal codes by specifically studying codes of weight 2 and 3. In the former case, we upper bound the code efficiency, proving that there are no such asymptotically-optimal cyclic codes. In contrast, for the latter case we construct codes which are asymptotically-optimal. We conclude by providing necessary conditions for the existence of cyclic and cyclic optimal Gray codes.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 11 )