Cart (Loading....) | Create Account
Close category search window
 

Identifying Evolving Groups in Dynamic Multimode Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lei Tang ; Dept. of Comput. Sci. & Eng., Arizona State Univ., Tempe, AZ, USA ; Huan Liu ; Jianping Zhang

A multimode network consists of heterogeneous types of actors with various interactions occurring between them. Identifying communities in a multimode network can help understand the structural properties of the network, address the data shortage and unbalanced problems, and assist tasks like targeted marketing and finding influential actors within or between groups. In general, a network and its group structure often evolve unevenly. In a dynamic multimode network, both group membership and interactions can evolve, posing a challenging problem of identifying these evolving communities. In this work, we try to address this problem by employing the temporal information to analyze a multimode network. A temporally regularized framework and its convergence property are carefully studied. We show that the algorithm can be interpreted as an iterative latent semantic analysis process, which allows for extensions to handle networks with actor attributes and within-mode interactions. Experiments on both synthetic data and real-world networks demonstrate the efficacy of our approach and suggest its generality in capturing evolving groups in networks with heterogeneous entities and complex relationships.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:24 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.