Cart (Loading....) | Create Account
Close category search window
 

Component Ranking for Fault-Tolerant Cloud Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zibin Zheng ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Zhou, T.C. ; Lyu, M.R. ; King, I.

Cloud computing is becoming a mainstream aspect of information technology. More and more enterprises deploy their software systems in the cloud environment. The cloud applications are usually large scale and include a lot of distributed cloud components. Building highly reliable cloud applications is a challenging and critical research problem. To attack this challenge, we propose a component ranking framework, named FTCloud, for building fault-tolerant cloud applications. FTCloud includes two ranking algorithms. The first algorithm employs component invocation structures and invocation frequencies for making significant component ranking. The second ranking algorithm systematically fuses the system structure information as well as the application designers' wisdom to identify the significant components in a cloud application. After the component ranking phase, an algorithm is proposed to automatically determine an optimal fault-tolerance strategy for the significant cloud components. The experimental results show that by tolerating faults of a small part of the most significant components, the reliability of cloud applications can be greatly improved.

Published in:

Services Computing, IEEE Transactions on  (Volume:5 ,  Issue: 4 )

Date of Publication:

Fourth Quarter 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.