By Topic

Semidefinite Relaxations of Robust Binary Least Squares Under Ellipsoidal Uncertainty Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tsakonas, E.E. ; ACCESS Linnaeus Centre, R. Inst. of Technol. (KTH), Stockholm, Sweden ; Jalden, J. ; Ottersten, B.

The problem of finding the least squares solution s to a system of equations Hs = y is considered, when s is a vector of binary variables and the coefficient matrix H is unknown but of bounded uncertainty. Similar to previous approaches to robust binary least squares, we explore the potential of a min-max design with the aim to provide solutions that are less sensitive to the uncertainty in H. We concentrate on the important case of ellipsoidal uncertainty, i.e., the matrix H is assumed to be a deterministic unknown quantity which lies in a given uncertainty ellipsoid. The resulting problem is NP-hard, yet amenable to convex approximation techniques: Starting from a convenient reformulation of the original problem, we propose an approximation algorithm based on semidefinite relaxation that explicitly accounts for the ellipsoidal uncertainty in the coefficient matrix. Next, we show that it is possible to construct a tighter relaxation by suitably changing the description of the feasible region of the problem, and formulate an approximation algorithm that performs better in practice. Interestingly, both relaxations are derived as Lagrange bidual problems corresponding to the two equivalent problem reformulations. The strength of the proposed tightened relaxation is demonstrated by pertinent simulations.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 11 )