Cart (Loading....) | Create Account
Close category search window
 

An Online Learning Approach to Occlusion Boundary Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jacobson, N. ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Freund, Y. ; Nguyen, T.Q.

We propose a novel online learning-based framework for occlusion boundary detection in video sequences. This approach does not require any prior training and instead “learns” occlusion boundaries by updating a set of weights for the online learning Hedge algorithm at each frame instance. Whereas previous training-based methods perform well only on data similar to the trained examples, the proposed method is well suited for any video sequence. We demonstrate the performance of the proposed detector both for the CMU data set, which includes hand-labeled occlusion boundaries, and for a novel video sequence. In addition to occlusion boundary detection, the proposed algorithm is capable of classifying occlusion boundaries by angle and by whether the occluding object is covering or uncovering the background.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.