Cart (Loading....) | Create Account
Close category search window
 

Silencing Hardware Backdoors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Waksman, A. ; Dept. of Comput. Sci., Columbia Univ. New York, NY, USA ; Sethumadhavan, S.

Hardware components can contain hidden backdoors, which can be enabled with catastrophic effects or for ill-gotten profit. These backdoors can be inserted by a malicious insider on the design team or a third-party IP provider. In this paper, we propose techniques that allow us to build trustworthy hardware systems from components designed by untrusted designers or procured from untrusted third-party IP providers. We present the first solution for disabling digital, design-level hardware backdoors. The principle is that rather than try to discover the malicious logic in the design -- an extremely hard problem -- we make the backdoor design problem itself intractable to the attacker. The key idea is to scramble inputs that are supplied to the hardware units at runtime, making it infeasible for malicious components to acquire the information they need to perform malicious actions. We show that the proposed techniques cover the attack space of deterministic, digital HDL backdoors, provide probabilistic security guarantees, and can be applied to a wide variety of hardware components. Our evaluation with the SPEC 2006 benchmarks shows negligible performance loss (less than 1% on average) and that our techniques can be integrated into contemporary microprocessor designs.

Published in:

Security and Privacy (SP), 2011 IEEE Symposium on

Date of Conference:

22-25 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.