Cart (Loading....) | Create Account
Close category search window
 

Weibull Statistical Analysis of Pulsed Breakdown Voltages in High-Pressure Carbon Dioxide Including Supercritical Phase

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kiyan, T. ; Grad. Sch. of Sci. & Technol., Kumamoto Univ., Kumamoto, Japan ; Ihara, T. ; Kameda, S. ; Furusato, T.
more authors

Pulsed discharge plasma in supercritical fluids (SCFs) has attracted a great deal of attention in the field of plasma application for chemical processing. Characteristics of electrical breakdown are one of the important concerns for dielectric reliability of a plasma reactor with SCFs. In this paper, the pulsed breakdown voltages of quasi-uniform gaps were measured by changing the CO2 medium from gas to supercritical phase at a given temperature, and Weibull statistical analysis was applied to the measured breakdown voltages. The area effect on breakdown voltage, which is known to give an equivalent effective constant to Weibull shape parameter m, was examined with three sphere-to-sphere gaps. The experimental results indicate that the dispersion in the pulsed breakdown voltage in pressurized carbon dioxide obeys Weibull distribution, and the Weibull shape parameter m depends on the state of the CO2 medium. The dependence of m on the medium density that was obtained from direct analysis of breakdown voltages for a given electrode system indicated a similar tendency to that of the effective constant by area effect analysis.

Published in:

Plasma Science, IEEE Transactions on  (Volume:39 ,  Issue: 8 )

Date of Publication:

Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.