By Topic

Fault-Tolerant Control for Nonlinear Markovian Jump Systems via Proportional and Derivative Sliding Mode Observer Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ming Liu ; School of Astronautics, Harbin Institute of Technology, Harbin, China ; Peng Shi ; Lixian Zhang ; Xudong Zhao

This paper investigates the problem of sensor fault estimation and fault-tolerant control for Markovian jump systems with time delay and Lipschitz nonlinearities. The issues involved here are: i) sensor faults; ii) model Lipchitz nonlinearities; iii) system structure changes governed by Markovian jumping parameters; and iv) time delay in system states. Such type of mathematical models can represent a large number of practical systems in the actual engineering. A new estimation technique (named proportional and derivative sliding mode observer) is developed to deal with this design problem. The proposed observer is mode-dependent type in which a derivative gain and a proportional gain are introduced to provide more design freedom, and a discontinuous input term is introduced to eliminate the effects of sensor faults. By employing the developed estimation technique, the asymptotic estimations of system states and sensor faults can be obtained simultaneously. Based on the estimation, an observer-based fault-tolerant control scheme is developed to stabilize the resulting closed-loop system. Finally, a numerical example is presented to illustrate the effectiveness and applicability of the proposed technique.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:58 ,  Issue: 11 )