By Topic

On High-Resolution Head-Related Transfer Function Measurements: An Efficient Sampling Scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wen Zhang ; Process Sci. & Eng., CSIRO, Sydney, NSW, Australia ; Mengqiu Zhang ; Kennedy, R.A. ; Abhayapala, T.D.

This paper deals with two important questions associated with HRTF measurement: 1) “what is the required angular resolution?,” and 2) “what is the most suitable sampling scheme?.” The paper shows that a well-defined finite number of spherical harmonics can capture the head-related transfer function (HRTF) spatial variations in sufficient detail, which is defined as the HRTF spatial dimensionality. For the 20-kHz audible frequency range, the value of the dimensionality means a high-directional resolution HRTF measurement is required. Considering such a high-resolution measurement, a number of sampling criteria have been identified from both mechanical setup and data processing aspects. Different sampling candidates are then compared to demonstrate that the best method which satisfies all requirements is the class termed as IGLOO. A fast spherical harmonic transform algorithm based on the IGLOO scheme is developed to accelerate the high-resolution data analysis. The proposed method is validated through simulation and experimental data acquired from a KEMAR mannequin.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:20 ,  Issue: 2 )