By Topic

Effective Robustness Analysis Using Bounded Model Checking Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Görschwin Fey ; Institute of Computer Science, University of Bremen, Bremen, Germany ; André Sulflow ; Stefan Frehse ; Rolf Drechsler

Continuously shrinking feature sizes result in an increasing susceptibility of circuits to transient faults, e.g., due to environmental radiation. Approaches to implement fault tolerance are known. But assessing the fault tolerance of a given implementation is a hard verification problem. Here, we propose the use of formal methods to assess the robustness of a digital circuit with respect to transient faults. Our formal model uses a fixed bound in time and exploits fault detection circuitry to cope with the complexity of the underlying sequential equivalence check. As a result, a lower and an upper bound on the robustness are returned together with vulnerable components. The underlying algorithm and techniques to improve the efficiency are presented. In experiments, we evaluate the method on circuits with different fault detection mechanisms.

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:30 ,  Issue: 8 )