Cart (Loading....) | Create Account
Close category search window
 

Bayesian Spectrum Sensing for Digitally Modulated Primary Signals in Cognitive Radio

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shoukang Zheng ; Inst. for Infocomm Res., Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Pooi-Yuen Kam ; Ying-Chang Liang ; Yonghong Zeng

Based on the high probability that primary user is idle in cognitive radio networks, we propose an optimal Bayesian detector structure for spectrum sensing. Although the optimal detector by Neyman-Pearson theorem maximizes the detection probability for a given false alarm probability, Bayesian detector can achieve a higher overall spectrum utilization and SU throughput and at the same time the primary user is well protected from secondary user's interference. For BPSK modulated primary signals we show that the optimal Bayesian detector can be reduced to an energy detector in lower SNR regime, and it can be approximated to a detector employing the sum of received signal magnitudes in high SNR regime to detect primary signals. We give the analysis for optimal Bayesian detector and the corresponding suboptimal detector structure in both low and high SNR regimes, and verify the performance of the detector with simulation results.

Published in:

Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd

Date of Conference:

15-18 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.