Cart (Loading....) | Create Account
Close category search window
 

Linear Diversity Combining Techniques Employed in Car-to-X Communication Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nuckelt, J. ; Inst. fur Nachrichtentechnik, Tech. Univ. Braunschweig, Braunschweig, Germany ; Hoffmann, H. ; Schack, M. ; Kurner, T.

This paper presents performance evaluation results of different linear diversity combining techniques that have been applied to IEEE 802.11p based Car-to-X (C2X) communication systems. More precisely, we employed the Selection Combining (SC), the Equal Gain Combining (EGC) and the Maximum Ratio Combining (MRC) algorithms to systems with multiple receiver antennas and compared the resulting performance to that of single-receive antenna systems. Concerning the great challenges of typical C2X propagation channels that go along with a strong time variance and long multipath delays, the use of multiple receive antennas in combination with adequate signal combining algorithms can clearly improve the reliability of the communication system even under poor Signal-to-Noise Ratio (SNR) conditions. Based on physical (PHY) layer simulations, the achieved performance of different diversity combining techniques has been evaluated using stochastic models of double-selective fading channels.

Published in:

Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd

Date of Conference:

15-18 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.