By Topic

Comparison of Algorithms for UWB Indoor Location and Tracking Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Juan Choliz ; Aragon Inst. for Eng. Res. (13 A), Univ. of Zaragoza, Zaragoza, Spain ; Miguel Eguizabal ; Angela Hernandez-Solana ; Antonio Valdovinos

With the popularity of navigation applications and the integration of GPS in user devices, location-awareness is becoming an essential feature demanded by users. Nevertheless, location-awareness in indoor environments is still limited by the inability of GPS to operate indoors. With a centimeter-level ranging resolution, Ultra-Wideband (UWB) is one of the most promising technologies to provide indoor location. Several location & tracking algorithms have been proposed in the literature to compute user's position according to the estimated distances to some reference nodes, each one providing the best performance in certain conditions. Nevertheless, most of these proposals are evaluated under too specific or simplistic conditions that do not account realistically for the specific implications of the UWB-based distance estimation and the indoor environment. This paper aims to evaluate the performance of different location and tracking algorithms on a realistic indoor scenario and with a specific UWB indoor ranging model, analyzing their advantages and drawbacks in relation to different conditions and system design parameters.

Published in:

Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd

Date of Conference:

15-18 May 2011