By Topic

Spatial spectral Gaussian mixture model approach for automatic segmentation of multispectral MR brain images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chegini, M. ; Fac. of Electr. & Comput. Eng., Tarbiat Modares Univ., Tehran, Iran ; Ghassemian, H.

The Gaussian Mixture Model (GMM) is one of the most widely used models for statistical segmentation of brain Magnetic Resonance (MR) images. Because the GMM is a histogram-based model, has an intrinsic limitation which spatial information is not included. This problem causes the GMM to make good results only on images with low levels of noise and high level of contrast. In this paper, an automated algorithm for tissue segmentation multispectral magnetic resonance (MR) images of the brain is presented. We introduce a spatial spectral GMM which augment histogram information with spatial data using adaptive Markov random fields and real prior information which is generated form a spectral clustering. We have called this approach “Spatial Spectral Segmentation” (SSS). The Expectation-Maximization (EM) algorithm is utilized to learn the parameter-tied, spatial spectral Gaussian mixture model. Segmentation of the brain image is achieved by the affiliation of each pixel to the component of the model that maximized the a posteriori probability. Also we propose a complete preprocessing to obtain a comprehensive segmentation approach. The presented algorithm is used to segment Multispectral included T1, T2 and PD simulated and real MR images of the brain into three different tissues (WM, GM and CSF) The performance of the SSS based method is compared with that of popular EM segmentation. The experimental results show that the proposed method is robust.

Published in:

Electrical Engineering (ICEE), 2011 19th Iranian Conference on

Date of Conference:

17-19 May 2011