By Topic

Heuristic algorithms for scheduling iterative task computations on distributed memory machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Yang ; Dept. of Comput. Sci., California Univ., Santa Barbara, CA, USA ; Cong Fu

Many partitioned scientific programs can be modeled as iterative executions of computational tasks and represented by iterative task graphs (ITGs). An ITG may or may not have dependence cycles. In this paper, we consider the symbolic scheduling of ITGs on distributed memory architectures with nonzero communication overhead and propose heuristic algorithms for scheduling both cyclic and acyclic ITGs without searching an entire iteration space. Our approach incorporates techniques of software pipelining, graph unfolding, directed acyclic graph (DAG) scheduling, and load balancing. We analyze the asymptotic optimality of the algorithms to show that the derived schedules are competitive to optimal solutions. We also study the sensitivity of scheduling performance on inaccurate weights. Finally, we present experimental results to demonstrate the effectiveness of the optimization techniques

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:8 ,  Issue: 6 )