By Topic

Generalized projective synchronization of time-delayed chaotic systems via sliding adaptive radial basis function neural network control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Negin Farzbod ; Engineering Department, Imam Khomeini International University of Qazvin, Qazvin, Iran ; Hassan Zarabadipour ; Mahdi Aliyari Shoorehdeli ; Faezeh Farivar

In this study, generalized projective synchronization (GPS) of two identical and nonidentical time-delayed chaotic systems is presented. Sliding adaptive radial basis function neural network control (SARBFNNC) is applied to synchronize two delayed chaotic systems. The advantages of the adaptive control, neural network and sliding mode control theory are combined in the proposed method. The stability of error dynamics is guaranteed with Lyapunov stability theory. Moreover, supposing that the parameters of the chaotic system are unknown, recursive least square (RLS) method is applied to estimate these unknown parameters. The proposed method has not been used for synchronization of time-delayed chaotic systems yet. Simulation results show that the proposed method is suitable and effective for synchronization of time-delayed chaotic systems.

Published in:

2011 19th Iranian Conference on Electrical Engineering

Date of Conference:

17-19 May 2011