By Topic

Adaptive robust backstepping control design for a non-minimum phase model of hard disk drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ataollahi, M. ; Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical and Computer Engineering, K. N. Toosi University of Technology, Tehran, Iran ; Eghrary, H.H. ; Taghirad, H.D.

In this paper, a new adaptive robust approach for non-minimum phase systems is proposed, based on the synthesis algorithm of dynamical backstepping design procedure. The previously proposed adaptive robust backstepping method has a limitation in stabilization of non-minimum phase systems, which is removed in this paper. The dynamic model of the voice coil motor actuator, which is used in the read/write head of hard disk drive, is considered as a case study to apply the proposed method. A simple but accurate model of this system is presented the proposed control method is applied onto this model. Simulations are performed for the embedded control system of hard disk drives. The obtained results verify the effectiveness of the proposed control law in terms of transient performance, tracking errors, and disturbance rejection, in both track seeking and track following modes.

Published in:

Electrical Engineering (ICEE), 2011 19th Iranian Conference on

Date of Conference:

17-19 May 2011