Cart (Loading....) | Create Account
Close category search window

Orientation Angle Calibration for Bare Soil Moisture Estimation Using Fully Polarimetric SAR Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xinyi Shen ; Instn. of Remote Sensing & Geogr. Inf. Syst., Peking Univ., Beijing, China ; Yang Hong ; Qiming Qin ; Weilin Yuan
more authors

This paper focuses on assessing the effectiveness of applying orientation angle calibration to polarimetric synthetic aperture radar (PolSAR) data for soil moisture estimation. We employ Cloude-decomposition-based method to estimate the orientation angle because it can relate a scatter-distributed pixel to its major component of an equivalent "pure target," use the Jet Propulsion Laboratory/Airborne Synthetic Aperture Radar L-band fully polarimetric data to validate the proposed method, and observe results in good agreement after orientation angle compensation is employed. Specifically, root mean square errors of measured radar backscattering coefficients σhh0 and σvv0 and copolarization ratio versus advanced integral equation model predictions are reduced significantly from 1.95, 1.33, and 2.03 dB to 1.30, 1.15, and 1.43 dB, respectively. The compensated copolarized backscattering coefficients are also used as inputs to a novel inversion model to estimate the dielectric factor Rhh and volumetric soil moisture mv. The results show that the estimation errors are reduced significantly from 0.075 to 0.054 and 0.056 to 0.041 for Rhh and mv, respectively. This paper demonstrates the advantage of orientation angle calibration as a preprocessing for estimating bare soil moisture, particularly in agricultural areas, and the preponderance of fully PolSAR data on soil moisture estimation over dual and single polarizations.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:49 ,  Issue: 12 )

Date of Publication:

Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.