By Topic

In Vivo Imaging and Spectroscopy of Dynamic Metabolism Using Simultaneous ^{13} C and ^1 H MRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Smith, M.R. ; Dept. of Med. Phys., Univ. of Wisconsin, Madison, WI, USA ; Peterson, E.T. ; Gordon, J.W. ; Niles, D.J.
more authors

Hyperpolarized (HP) 13C-labeled pyruvate studies with magnetic resonance (MR) have been used to observe the kinetics of metabolism in vivo. Kinetic modeling to measure metabolic rates in vivo is currently limited because of nonspecific hyperpolarized signals mixing between vascular, extravascular, and intracellular compartments. In this study, simultaneous acquisition of both 1H and 13 C signals after contrast agent injection is used to resolve specific compartments to improve the accuracy of the modeling. We demonstrate a novel technique to provide contrast to the intracellular compartments by sequential injection of HP [1-13C] pyruvate followed by gadolinium-chelate to provide T1-shortening to extra-cellular compartments. A kinetic model that distinguishes the intracellular space and includes the T1-shortening effect of the gadolinium chelate can then be used to directly measure the intracellular 13C kinetics.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 1 )