By Topic

Harvesting-Aware Power Management for Real-Time Systems With Renewable Energy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shaobo Liu ; Marvell Semiconductor, Marlborough, MA, USA ; Jun Lu ; Qing Wu ; Qinru Qiu

In this paper, we propose a harvesting-aware power management algorithm that targets at achieving good energy efficiency and system performance in energy harvesting real-time systems. The proposed algorithm utilizes static and adaptive scheduling techniques combined with dynamic voltage and frequency selection to achieve good system performance under timing and energy constraints. In our approach, we simplify the scheduling and optimization problem by separating constraints in timing and energy domains. The proposed algorithm achieves improved system performance by exploiting task slack with dynamic voltage and frequency selection and minimizing the waste on harvested energy. Experimental results show that the proposed algorithm improves the system performance in deadline miss rate and the minimum storage capacity requirement for zero deadline miss rate. Comparing to the existing algorithms, the proposed algorithm achieves better performance in terms of the deadline miss rate and the minimum storage capacity under various settings of workloads and harvested energy profiles.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 8 )