Cart (Loading....) | Create Account
Close category search window
 

A Highly-Digital VCO-Based Analog-to-Digital Converter Using Phase Interpolator and Digital Calibration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tae-Kwang Jang ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Jaewook Kim ; Young-Gyu Yoon ; SeongHwan Cho

A first-order time-based ΔΣ modulator using voltage-controlled oscillator (VCO) is presented. The proposed modulator employs phase interpolation technique to enhance the time resolution of the VCO and digital calibration to improve the linearity of the VCO tuning curve. The proposed modulator, implemented in 0.13 μm CMOS process, achieves 55 dB peak signal-to-noise ratio and 52.5 dB peak signal-to-noise-and-distortion ratio at 600 MHz sampling frequency for 20 MHz input bandwidth and consumes 14.3 mW.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 8 )

Date of Publication:

Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.