By Topic

A new neural network structure for temporal signal processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Hussain ; Dept. of Electron. Eng. & Phys., Paisley Univ., UK

A new two-layer linear-in-the-parameters feedforward network termed the functionally expanded neural network (FENN) is presented, together with its design strategy and learning algorithm. It is essentially a hybrid neural network incorporating a variety of non-linear basis functions within its single hidden layer which emulate other universal approximators employed in the conventional multi-layered perceptron (MLP), radial basis function (RBF) and Volterra neural networks (VNN). The FENN's output error surface is shown to be uni-modal allowing high speed single run learning. A simple strategy based on an iterative pruning retraining scheme coupled with statistical model validation tests is proposed for pruning the FENN. Both simulated chaotic (Mackey-Glass time series) and real-world noisy, highly nonstationary (sunspot) time series are used to illustrate the superior modeling and prediction performance of the FENN compared with other previously reported, more complex neural network based predictor models

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:4 )

Date of Conference:

21-24 Apr 1997