By Topic

Digital Postcompensation Using Volterra Series Transfer Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guiomar, F.P. ; Dept. of Electron., Telecommun. & Inf., Univ. of Aveiro, Aveiro, Portugal ; Reis, J.D. ; Teixeira, A.L. ; Pinto, A.N.

We propose a noniterative digital backward propagation technique, based on an inverse modified Volterra series transfer function to postcompensate transmission linear and nonlinear impairments in the presence of optical noise. Using a single-channel 40-Gb/s nonreturn-to-zero quadrature phase-shift-keying optical signal propagated over 20 × 80 km of standard single-mode fiber, and performing digital postcompensation around the Nyquist rate, our compensation algorithm is able to surpass the maximum accuracy obtained with a symmetric split-step Fourier method, enabling us to increase the nonlinear tolerance by approximately 2 dB.

Published in:

Photonics Technology Letters, IEEE  (Volume:23 ,  Issue: 19 )