By Topic

Modeling of a snake-like robot rectilinear motion and requirements for its actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gmiterko, A. ; Dept. of Appl. Mech. & Mechatron., Tech. Univ. of Kosice, Kosice, Slovakia ; Kelemen, M. ; Virgala, I. ; Surovec, R.
more authors

The paper deals with a rectilinear motion of a snake-like robot. At first the various kinds of friction models are discussed and then the mathematical model of rectilinear snake-like robot locomotion is established. Considering the isotropic Coulomb's friction model the average velocity of N-mass system is derived. Further the average velocity dependence on the number of used masses N is described through the graph. From the equation of average velocity there is the optimal number of masses N established. In the paper there are two alternative sequences of motion considered and subsequently through the simulations they are compared to each other. Finally the requirements concerning the linear actuator between two masses are described.

Published in:

Intelligent Engineering Systems (INES), 2011 15th IEEE International Conference on

Date of Conference:

23-25 June 2011